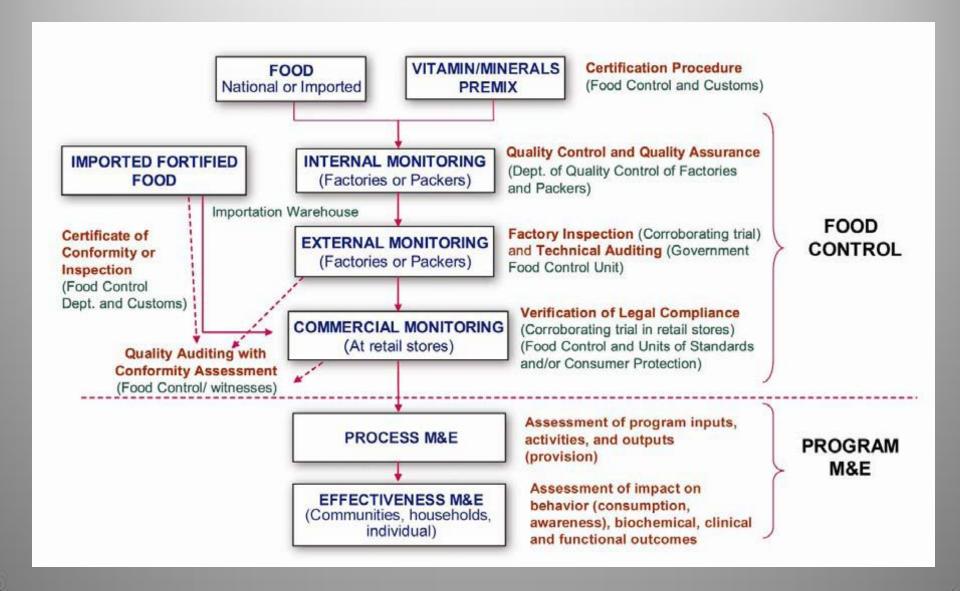
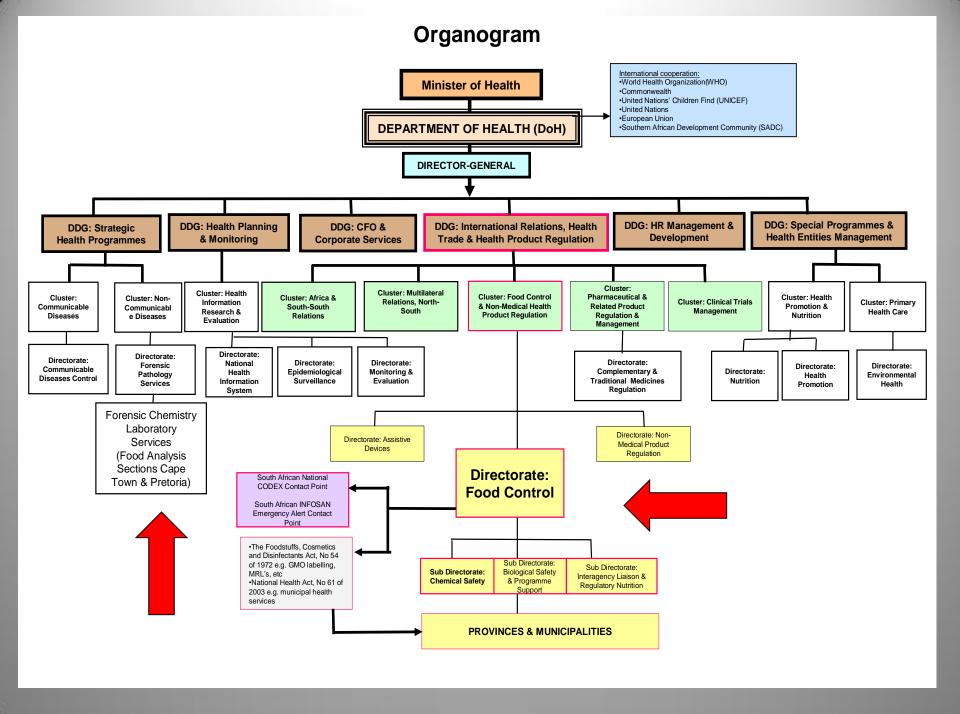

NATIONAL FOOD CONTROL SYSTEMS Opportunities and Constraints


Philip Randall

pcubed@mweb.co.za


Tanzania
5th April 2011

Framework for Monitoring of Flour Fortification Programs

Using South Africa as an example of constraints

Food laboratories

- Only 2 laboratories in country
- Equipment old
- Severe understaffing
- Chronic skills shortage
- Salaries not market related
- Poor turnaround time on analysis

Multiple regulatory authorities, multiple regulations

- Ministry of Agriculture Grain, Livestock, Fish etc – "Unprocessed"
- Ministry of Health any "processed" foods
- Water and Forestry under Min of Agriculture
- Parastatals SABS canned fish; PPECB exports
- Provincial, Metropolitan and District Authorities

- More than 16 different food regulations enacted under various Acts of Parliament
- Local By-laws still exist

 Antique laws permit "any sealed package" to be a sample and "the Government Chemist" is always right

Three Spheres of Government

- National responsible for overall coordination and organising National Sampling Plans, Emergency Response to food borne illness etc
- Provincial responsible within own province;
 some very active some very weak
- Municipal as above

 National can not tell Provincial or Municipal Authorities to do anything – only "request"

- Food Control Laboratories report back to "client" i.e. Provincial or Municipal but do not copy National.
- Port Health now report to Provincial Government not National Government (only border authority not to do so)

Fortification Consequences

- Inspectors focus on "easy" targets i.e. Big mills so compliance amongst (smaller rural mills) those feeding the most vulnerable groups is viewed as low.
- Food Control not monitoring pre-mix

A Vision for the Future

- Organisation revamp to allow direct line of communication and responsibility
- Port hopping to be monitored through linkage of Customs & Excise into system
- Strengthen "extended detention" system and prosecutions for non-compliance – currently prosecuted under "failure to comply with revenue requirements"

- Coordinate analysis results and analyse centrally – any and every investigation, complaint or analysis to be copied to a central facility charged with data compilation, trend analysis and data mapping plus disseminating results.
- Same facility to "look over the horizon" i.e.
 Early warning of food borne threats in other countries

- Establish "elite unit" for rapid response, method development etc
- Look to ISO 17025 compliance using "technique" accreditation

Information Resources

- Sample size, storage and transportation requirements
- Analysis time, sample tracking and interpretation of results against legislation
- Possible reasons for non-compliance
- Media response
- FAQ section for consumers especially during/after media blitz

NATIONAL REGULATORY MONITORING SYSTEM

Sampling Plans and Implementation

Specific Plans in RSA

- Additives
- Contaminants
- MRL's
- Mycotoxins
- Nutrition

Of those 5 plans only nutrition is not a safety issue

- Monitoring for public safety is vastly different
 - and easier than monitoring for compliance

Specify Sampling Parameters

- Specific commodity i.e. Fruits, grains etc
- Specific point in food chain i.e. Farm, market, retailer

For fortification only at the mill

Do not let inspectors work on random basis

For Fortification

- Food Control, therefore, need to ensure major mills are not "over monitored" due to ease of access
- Question of "risk analysis" not only to the public from non-compliance but to the fortification programme per se because larger millers perceive smaller millers are noncompliant and threaten to pull out in protest

Folic acid and Iron

 Spinach extract and iron filings will conform to specification – analysis will indicate both micronutrients are present and in sufficient quantity - but that is not "fit for purpose"

- Is specifying the iron type a TBT??
- Is specifying a maximum value necessary??

Framework for Monitoring of Flour Fortification

Work Smarter

- Check the pre-mix as "fit for purpose"
- Check pre-mix consumption
- Check production output

Compliance established in hours not days/weeks

Low cost, low technology, high level of confidence

Variability

Philip Randall

pcubed@mweb.co.za

Tanzania

5th April 2011

Pre-Mix vs Product

- Same laboratories
- Lab's A and D are ISO 17025
- Fortification Formulator uses 28% in generating limits – for the want of a better number the Formulator value has been used.
- GREEN above the limit non compliant.
- PINK below the limit non compliant

Pre-Mix % age of theory

Product %age of theory

	Lab A	Lab B	Lab C	Lab D		Lab A	Lab B	Lab C	Lab D
Vitamin A	119.2	110.7	108.2	112.2	Vitamin A	95.4	47.5	108.0	85.9
Thiamine	105.7	86.1	97.1	87.2	Thiamine	79.0		49.5	211.4
Riboflavin	95.1	88.1	102.3	139.5	Riboflavin	138.4	43.2	89.4	115.4
Niacinamide	96.8	107.9	98.8	93.2	Niacinamide	65.8	16.3	24.0	145.6
Pyridoxine	113.6	114.3	94.8	75.8	Pyridoxine	123.6	75.0	93.1	255.5
Folic	116.6		102.2	112.0	Folic	68.4		130.4	115.2
Iron	89.9		97.4	116.5	Iron	90.4		72.2	90.6
Zinc	116.3		99.9	96.8	Zinc	97.0		76.4	109.4

Pre-Mix % age of theory

Product %age of theory

						Lab A	Lab B	Lab C	Lab D
	Lab A	Lab B	Lab C	Lab D					
Vitamin A	131.5	111.6	116.3	148.3	Vitamin A	92.7	50.2	115.9	61.9
Thiamine	118.1	118.9	109.2	93.3	Thiamine	101.3		61.2	213.2
Riboflavin	91.1	86.5	97.5	149.0	Riboflavin	140.2	47.1	85.2	116.7
Niacinamide	101.7	111.5	105.1	88.1	Niacinamide	70.0	64.8	52.0	154.2
Pyridoxine	132.8	152.9	115.1		Pyridoxine	142.5	82.2	88.5	222.1
Folic	148.5	132.3	142.9	159.1		48.6		119.0	129.1
FUIL	146.5		142.9	159.1	Tone	10.0		113.0	123.1
Iron	91.2		97.1	119.7	Iron	104.7		72.8	95.0
Zinc	109.9		99.2	86.1	Zinc	100.9		82.0	93.8

Pre-Mix % age of theory

	Lab A	Lab B	Lab C	Lab D		Lab A	Lab B	Lab C	Lab D
Vitamin A	97.4	84.0	85.8	89.5	Vitamin A	106.0	60.3	120.9	75.2
Thiamine	88.7	78.3	75.5	69.2	Thiamine	71.9		62.8	200.7
Riboflavin	80.7	72.0	79.9	77.2	Riboflavin	129.2	46.8	80.2	128.3
Niacinamide	77.8	88.8	78.7	72.0	Niacinamide	70.5	33.6	45.6	141.8
Pyridoxine	92.9	118.7	76.3	76.2	Pyridoxine	163.4	89.5	90.3	281.4
Folic	86.5		81.3	93.2	Folic	93.2		143.2	117.7
Iron	72.6		77.7	95.8	Iron	76.6		64.5	91.9

75.9 **Zinc**

Pre-Mix % age of theory

81.9

93.5

Zinc

Product %age of theory

109.2

Product %age of theory

76.8

104.4

	Lab A	Lab B	Lab C	Lab D		Lab A	Lab B	Lab C	Lab D
Vitamin A	123.2	101.4	111.9	114.6	Vitamin A	94.2	51.4	119.0	67.9
Thiamine	110.9	95.3	100.9	88.9	Thiamine	74.1		65.5	197.7
Riboflavin	85.3	77.6	84.9	118.0	Riboflavin	103.1	38.0	74.6	112.8
Niacinamide	92.1	103.4	95.4	84.8	Niacinamide	77.9	82.9	45.2	152.5
Pyridoxine	121.8	138.4	102.4	83.2	Pyridoxine	141.1	78.5	104.3	241.8
Folic	136.1		129.2	148.2	Folic	65.0	_	115.2	76.7
Iron	82.4		89.0	108.0	Iron	74.1		64.3	90.1
Zinc	107.0		91.6	90.1	Zinc	136.3		78.9	101.3

AACC Check Sample 2010

- Vitamin, Mineral and Proximate (VMP)
- http://www.aaccnet.org/checksample/

	Moisture	Protein	Ash	Iron	Zinc
Mean CV	7.31	3.82	6.81	10.92	6.51
Max	9.30	6.59	21.43	26.78	8.04
Min	4.61	2.24	2.17	5.77	4.65

	Thiamine	Riboflavin	Niacin	Pyrodoxine	Folic acid
Mean CV	26.89	18.35	19.49	17.93	22.24
Max	37.78	21.92	28.48	20.00	40.89
Min	17.44	13.51	11.79	14.77	15.14

	Vitamin A	Cyanocobalamin
Mean CV	70.52	65.01
Max	185.01	166.67
Min	31.24	21.76

Framework for Monitoring of Flour Fortification

