Maize fortification: update on organoleptic studies of various types of maize flours and cooked maize porridges

Filip Van Bockstaele
Philip Randall
Quentin Johnson
Anna Verster
Food Quality

Nutritional quality

Sensorial quality

Physico-chemical quality
Sensory analysis

TASTE
sweet, sour, salty, bitter, umami

SMELL
aroma

TEXTURE
fluid, solid, hard, brittle, sticky

SIGHT
Color, surface structure, reflectance

Maize strategy meeting 2016 Dar es Salaam
From maize meal to porridge

Ingredients → Processing → End product

Maize strategy meeting 2016 Dar es Salaam
Ingredients
Ingredients

- Maize meal composition:
 - Maize variety
 - Type of milling
 - Extraction rate

Typical Extraction Rates for Maize meal

<table>
<thead>
<tr>
<th>Mill size</th>
<th>Maize meal Extraction Rate %</th>
<th>Kernel Components for conversion to maize flour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Large</td>
<td>70 - 75</td>
<td>Endosperm with some pericarp and germ</td>
</tr>
<tr>
<td>Medium</td>
<td>65 - 70</td>
<td>Endosperm, pericarp and germ</td>
</tr>
<tr>
<td>Small</td>
<td>60 - 65</td>
<td>Endosperm little or no pericarp and germ</td>
</tr>
</tbody>
</table>

NOTE:
Pericarp and germ components can influence the taste of the cooked porridge. Bitterness is one of the characteristic tastes from the pericarp and germ. The purer the endosperm used to mill into flour the lower the bitterness taste.
Ingredients

• Particle size distribution:

Beckman Coulter LS 13320 laser diffraction particle size analyzer (Analis)
From maize meal to porridge

Ingredients ➔ Processing ➔ End product

STORAGE

TASTE
sweet, sour, salty, bitter, umami

SMELL
aroma

TEXTURE
fluid, solid, hard, brittle, sticky

SIGHT
Color, surface structure, reflectance

Maize strategy meeting 2016 Dar es Salaam
From maize meal to porridge

- Storage conditions: fat hydrolysis and oxidation

Figure 3.9 Changes in free fatty acids of white maize meal during storage at room temperature (≈25°C) and 43°C

John Shindano. PhD thesis (Ghent University, 2007)
From maize meal to porridge

Ingredients

Processing

End product

Cooking time/temperature
Stirring
Water/maize ratio

STORAGE

TASTE
sweet, sour, salty, bitter, umami

SMELL
aroma

SOUND

TEXTURE
fluid, solid, hard, brittle, sticky

SIGHT
Color, surface structure, reflectance

Maize strategy meeting 2016 Dar es Salaam
Processing

• Cooking test

• Pasting (RVA)
Processing

• Pasting profile:
From maize meal to porridge

Ingredients → Processing → End product

STORAGE

Cooking time/temperature
Stirring
Water/maize ratio

STORAGE

Maize strategy meeting 2016 Dar es Salaam
Problem statement

Ingredients → Processing → End product

Storage

COOKING TIME/TEMPERATURE
Stirring
Water/maize ratio

Fortification

TASTE
sweet, sour, salty, bitter, umami

SMELL
aroma

TEXTURE
fluid, solid, hard, brittle, sticky

SIGHT
Color, surface structure, reflectance
Problem statement

Factors that may limit the amount of fortificants that can be added to a single food vehicle

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Technological/sensory</th>
<th>Safety</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin A</td>
<td>X</td>
<td>XXX</td>
<td>XXX(^a)</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>–</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>–</td>
<td>X</td>
<td>XXX</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>XX</td>
<td>X</td>
<td>XXX(^b)</td>
</tr>
<tr>
<td>Thiamine (vitamin B(_1))</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Riboflavin (vitamin B(_2))</td>
<td>XX</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Niacin (vitamin B(_3))</td>
<td>–</td>
<td>XXX(^c)</td>
<td>X</td>
</tr>
<tr>
<td>Vitamin B(_6)</td>
<td>–</td>
<td>X</td>
<td>–</td>
</tr>
<tr>
<td>Folic acid</td>
<td>–</td>
<td>XXX(^d)</td>
<td>–</td>
</tr>
<tr>
<td>Vitamin B(_12)</td>
<td>–</td>
<td>–</td>
<td>X</td>
</tr>
<tr>
<td>Iron(^e)</td>
<td>XXX</td>
<td>XX</td>
<td>X</td>
</tr>
<tr>
<td>Zinc</td>
<td>XX</td>
<td>XXX</td>
<td>X</td>
</tr>
<tr>
<td>Calcium</td>
<td>X</td>
<td>XX</td>
<td>XXX(^f)</td>
</tr>
<tr>
<td>Selenium</td>
<td>–</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Iodine</td>
<td>X</td>
<td>XXX</td>
<td>–</td>
</tr>
</tbody>
</table>

\(^{-}\) no constraint; X, a minor constraint; XX, moderate constraint; XXX, major constraint.

\(^a\) If an oil-based form is used to fortify oils or fats, costs can be reduced.

\(^b\) Cost constraints are mainly a consequence of losses during manufacturing, storage, distribution, and cooking which mean that considerable overage is required.

\(^c\) Much less of a concern if niacinamid, as opposed to nicotinic acid, is used as the fortificant.

\(^d\) The risk of adverse effects is minimized by the co-addition of vitamin B\(_12\).

\(^e\) Refers to the more bioavailable forms.

\(^f\) Cost constraints are mainly a consequence of the need to add such large amounts.
Fe-sources

Best option for cereal flours with high turnover, typically use within 1 month for humid, warm climate and 3 months in dry, cold climate

High bio-availability, especially in high phytate flours

Ferrous sulphate can cause rancidity depending on fat content, climate and type of flour

More stable, physical separation from food components and thus slow down sensory changes

TABLE 5.1

<table>
<thead>
<tr>
<th>Compound</th>
<th>Iron content (%)</th>
<th>Relative bioavailabilitya</th>
<th>Relative costc (per mg iron)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water soluble</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrous sulfate. 7H$_2$O</td>
<td>20</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>Ferrous sulfate. dried</td>
<td>33</td>
<td>100</td>
<td>1.0</td>
</tr>
<tr>
<td>Ferrous gluconate</td>
<td>12</td>
<td>89</td>
<td>6.7</td>
</tr>
<tr>
<td>Ferrous lactate</td>
<td>19</td>
<td>67</td>
<td>7.5</td>
</tr>
<tr>
<td>Ferrous bisglycinate</td>
<td>20</td>
<td>$>100^c$</td>
<td>17.6</td>
</tr>
<tr>
<td>Ferric ammonium citrate</td>
<td>17</td>
<td>51</td>
<td>4.4</td>
</tr>
<tr>
<td>Sodium iron EDTA</td>
<td>13</td>
<td>$>100^c$</td>
<td>16.7</td>
</tr>
<tr>
<td>Poorly water soluble, soluble in dilute acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrous fumarate</td>
<td>33</td>
<td>100</td>
<td>2.2</td>
</tr>
<tr>
<td>Ferrous succinate</td>
<td>33</td>
<td>92</td>
<td>9.7</td>
</tr>
<tr>
<td>Ferric saccharate</td>
<td>10</td>
<td>74</td>
<td>8.1</td>
</tr>
<tr>
<td>Water insoluble, poorly soluble in dilute acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferric orthophosphate</td>
<td>29</td>
<td>25–32</td>
<td>4.0</td>
</tr>
<tr>
<td>Ferric pyrophosphate</td>
<td>25</td>
<td>21–74</td>
<td>4.7</td>
</tr>
<tr>
<td>Elemental iron</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>H-reduced</td>
<td>96</td>
<td>13–148d</td>
<td>0.5</td>
</tr>
<tr>
<td>Atomized</td>
<td>96</td>
<td>(24)</td>
<td>0.4</td>
</tr>
<tr>
<td>CO-reduced</td>
<td>97</td>
<td>(12–32)</td>
<td><1.0</td>
</tr>
<tr>
<td>Electrolytic</td>
<td>97</td>
<td>75</td>
<td>0.8</td>
</tr>
<tr>
<td>Carbonyl</td>
<td>99</td>
<td>5–20</td>
<td>2.2</td>
</tr>
<tr>
<td>Encapsulated forms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrous sulfate</td>
<td>16</td>
<td>100</td>
<td>10.8</td>
</tr>
<tr>
<td>Ferrous fumarate</td>
<td>16</td>
<td>100</td>
<td>17.4</td>
</tr>
</tbody>
</table>
What is reported in literature?

• Tortillas
 – Richins et al. (2008):
 • Iron sources (sulfate, fumarate, pyrophosphate and elec. iron) significantly changed the instrumental and sensory color of fortified tortillas
 • Electrolytic iron and ferric pyrophosphate least amount of change
 – Dunn et al. (2007):
 • Sensory test 100 consumers
 • No sign. difference in acceptability of color, appearance, aroma, texture or flavor
 • Unfortified and fortified with electrolytic iron
 – Rosado et al. (2005):
 • Electrolytic iron
 • No color changes
 – Burton et al. (2008):
 • Fumarate
 • Darker color
What is reported in literature?

• Porridge:
 – Bovell-Benjamin et al. (1999):
 • unfortified <-> fortified maize porridge
 • Whole meal porridge
 • Brighter yellow color for unfortified
 • Sulfate, bisglycinate, trisglycinate, EDTA
 • Biglycinate highly increased racidity in maize flour
Q1: DO IRON SOURCES IMPACT COLOUR PROFILE OF PORRIDGE?
Impact of Fe/Zn-source on colour

![Graph showing the impact of different iron and zinc sources on colour over time. The graph compares various sources such as iron sulphate, iron fumarate, iron EDTA, electrolytic iron, zinc oxide, and zinc gluconate. The x-axis represents different sources, while the y-axis shows colour intensity (L*). The graph includes data points for day 1, week 1, week 2, week 3, and week 5.]

Maize strategy meeting 2016 Dar es Salaam
Impact of Fe/Zn-source on colour
Which one is fortified?

SuperSun - Iwisa
Q2: DO IRON SOURCES IMPACT PASTING PROFILE OF MAIZE MEAL?
Q3: DO IRON SOURCES ALTER THE SENSORY PERCEPTION OF MAIZE MEAL PORRIDGE?
Fortification of wheat flour and maize meal with different iron compounds: Results of a series of baking trials

Philip Randall, Quentin Johnson, and Anna Verster

Abstract

Background. Wheat and maize flour fortification is a preventive food-based approach to improve the micronutrient status of populations. In 2009, the World Health Organization (WHO) released recommendations for such fortification, with guidelines on the addition levels for iron, folic acid, vitamin B12, vitamin A, and zinc at various levels of average daily consumption. Iron is the micronutrient of greatest concern to the food industry, as some believe there may be some adverse interactions in some or all of the finished products produced from wheat flour and maize meal.

Objective. To determine if there were any adverse interactions due to selection of iron compounds and, if differences were noted, to quantify those differences.

Methods. Wheat flour and maize meal were sourced in Kenya, South Africa, and Tanzania, and the iron compound sodium iron ethylenediaminetetraacetate (NaFeEDTA), ferrous fumarate, or ferrous sulfate) was varied and dosed at rates according to the WHO guidelines for consumption of 75 to 149 g/day of wheat flour and >300 g/day of maize meal and tested again for 150 to 300 g/day for both. Bread, chapatti, ugali (thick porridge), and utaji (thin porridge) were prepared locally and assessed on whether the products were acceptable under industry-approved criteria and whether industry could discern any differences, knowing that differences existed, by academic sensory analysis using a combination of trained and untrained panellists and in direct side-by-side comparison.

Results. Industry (the wheat and maize milling sector) scored the samples as well above the minimal standard, and under academic scrutiny no differences were reported. Side-by-side comparison by the milling industry did indicate some slight differences, mainly with respect to color, although these differences did not correlate with any particular iron compound.

Conclusions. The levels of iron compounds used, in accordance with the WHO guidelines, do not lead to changes in the baking and cooking properties of the wheat flour and maize meal. Respondents trained to measure against a set benchmark and/or discern differences could not consistently replicate perceived difference observations.

Key words: Ferrous fumarate, ferrous sulfate, maize meal, NaFeEDTA, wheat flour, WHO guidelines

Introduction

National fortification requires the support of a variety of stakeholders, including stakeholders from industries who use fortification premixes in their wheat flour and maize meal products.

Following the Second Technical Workshop on Wheat Flour Fortification: Practical Recommendations for National Application, the World Health Organization (WHO) [1] issued its “Recommendations on wheat and maize flour fortification meeting report: Interim Consensus Statement” in 2009, which was followed by the publication of the deliberations of the various working groups as a supplement to the Food and Nutrition Bulletin [2–9]. In this statement and the supplement, guidelines were issued on the addition levels for iron, folic acid, vitamin B12, vitamin A, and zinc at various levels of average daily consumption of wheat flour and maize meal (75 to 149, 150 to 300, and >300 g/day).

Of all of the micronutrients discussed, iron was the one of greatest concern to the food industry, as some industry delegates believed there may be some
Objective of the study

• Determine if there were any adverse interactions due to the selection of iron compounds in the finished products produced from wheat flour or maize meal, and if differences were noted, to quantify those differences.
Kenya
- UNGA Mills
- Kenyatta University

Tanzania
- Bakhresa Mills
- Tanzania Food and Nutrition Centre

South-Africa
- Southern African Grain laboratories (SAGL)
Flour Fortification

• Locally sourced wheat flour and maize meal:
 - Medium to high extraction

Iron compounds:
- Wheat flour: @75–149 g/day consumption (WHO guideline level)
- NaFeEDTA: 40 ppm Fe
- Ferrous fumarate (FeC₄H₂O₄): 60 ppm Fe
- Ferrous sulfate (FeSO₄): 60 ppm Fe

- Maize meal: @>300 g/day consumption (WHO guideline level)
 - NaFeEDTA: 15 ppm Fe
 - Ferrous fumarate (FeC₄H₂O₄): 25 ppm Fe

Ferrous sulfate was not added to the maize meal because it had previously been reported [14, 15] that it could cause undesirable blue or green colors in cooked products made from maize meal.

Products

<table>
<thead>
<tr>
<th>Kenya</th>
<th>Tanzania</th>
<th>South-Africa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bread</td>
<td>Bread</td>
<td>Bread</td>
</tr>
<tr>
<td>UNGA: sponge and dough</td>
<td>Bakhresa: straight dough</td>
<td>Chorleywood bread process</td>
</tr>
<tr>
<td>Kenyatta: straight dough</td>
<td>Food centre: straight dough</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chappati</td>
<td>Chappati</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ugali</td>
<td>Ugali</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uji</td>
<td>Uji</td>
<td></td>
</tr>
</tbody>
</table>

- Preparation and evaluation under ‘local rules’
- Retention samples for re-evaluation after 3 or 6 months
Assessment

• Were the products acceptable under industry approved criteria?

• Were the products acceptable under academic sensory analysis using a combination of trained and untrained panelists?

• In direct side-by-side comparison, could milling industry assessment discern any differences, knowing that differences existed?
Tanzanian Maize Meal – Mill (uji)

EDTA - Control

Control - Fumarate
Tanzanian Maize Meal - TFNC
Tanzanian Maize Meal – TFNC - ugali

EDTA

Blank

Fumarate
Results

• Bakhresa Mills (Tanzania) => Ugali
 – “Some slightly different colour” with EDTA and Fumerate described as faintly “greenish white” when directly compared to each other but all considered acceptable.
 – Taste = normal

• Food and Nutrition Centre (Tanzania) => Ugali and Uji
 – No differences
Results

- Ugali score: Kenyatta University, Kenya

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Control</th>
<th>Ferrous fumarate</th>
<th>NaFeEDTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>7.5 (0.7)</td>
<td>7.2 (0.8)</td>
<td>7.4 (0.9)</td>
</tr>
<tr>
<td>Color</td>
<td>7.8 (0.6)</td>
<td>7.2 (0.8)</td>
<td>7.6 (0.9)</td>
</tr>
<tr>
<td>Odor</td>
<td>7.1 (1.0)</td>
<td>7.0 (1.2)</td>
<td>7.2 (1.2)</td>
</tr>
<tr>
<td>Texture</td>
<td>7.4 (0.9)</td>
<td>7.1 (1.5)</td>
<td>6.9 (1.3)</td>
</tr>
<tr>
<td>Taste</td>
<td>7.1 (1.2)</td>
<td>6.7 (1.2)</td>
<td>7.3 (1.0)</td>
</tr>
<tr>
<td>Overall</td>
<td>7.5 (0.7)</td>
<td>6.7 (1.2)</td>
<td>7.2 (1.0)</td>
</tr>
<tr>
<td>Retention samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Appearance</td>
<td>7.0 (1.3)</td>
<td>6.8 (1.3)</td>
<td>6.8 (1.3)</td>
</tr>
<tr>
<td>Color</td>
<td>7.2 (1.3)</td>
<td>6.7 (1.3)</td>
<td>6.6 (1.5)</td>
</tr>
<tr>
<td>Odor</td>
<td>6.7 (1.6)</td>
<td>6.3 (2.2)</td>
<td>6.5 (2.0)</td>
</tr>
<tr>
<td>Texture</td>
<td>6.7 (1.8)</td>
<td>6.9 (1.9)</td>
<td>6.9 (1.7)</td>
</tr>
<tr>
<td>Taste</td>
<td>6.7 (1.7)</td>
<td>6.8 (1.7)</td>
<td>6.3 (2.0)</td>
</tr>
<tr>
<td>Overall</td>
<td>6.4 (1.6)</td>
<td>6.5 (1.9)</td>
<td>6.5 (1.4)</td>
</tr>
</tbody>
</table>
Results: maize meal

• Ugali acceptability: Kenyatta University, Kenya

<table>
<thead>
<tr>
<th>Question</th>
<th>Control</th>
<th>Ferrous fumarate</th>
<th>NaFeEDTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is this product generally ACCEPTABLE?</td>
<td>1.2 (0.4)</td>
<td>1.1 (0.2)</td>
<td>1.1 (0.2)</td>
</tr>
<tr>
<td>Would you BUY this product if it was commercially available?</td>
<td>1.1 (0.3)</td>
<td>1.1 (0.2)</td>
<td>1.1 (0.3)</td>
</tr>
<tr>
<td>Would you BUY this product knowing it contained health benefits?</td>
<td>1.1 (0.3)</td>
<td>1.0 (0.0)</td>
<td>1.1 (0.2)</td>
</tr>
<tr>
<td>Retention samples</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is this product generally ACCEPTABLE?</td>
<td>1.2 (0.4)</td>
<td>1.2 (0.4)</td>
<td>1.2 (0.4)</td>
</tr>
<tr>
<td>Would you BUY this product if it was commercially available?</td>
<td>1.2 (0.4)</td>
<td>1.2 (0.4)</td>
<td>1.3 (0.5)</td>
</tr>
<tr>
<td>Would you BUY this product knowing it contained health benefits?</td>
<td>1.1 (0.3)</td>
<td>1.2 (0.4)</td>
<td>1.1 (0.3)</td>
</tr>
</tbody>
</table>
Conclusion Sensory properties of the porridge

- Slight differences in colour but not related to a particular iron source
- Quality = normal
- All acceptable
General Conclusion

• No differences in colour were found for super maize meal porridge by using colorimeter measurements.

• Some slight differences in colour were noticed in Tanzania sensory trials but all acceptable

• Fe-sources do not lead to changes in the cooking properties of maize meal.

• Further research needed on storage conditions of maize meal and impact of all premix components
What to do when starting with fortifying?

• Before starting up with fortifying -> check impact on product quality
• Make sure premix specifications (types, conc, quality...) are set right and clear from the beginning
• Use slightly higher concentrations (overdosage taking into account mill variation)
• Use in-land procedures and products
• Act smart: do we observe a difference? -> Is this difference acceptable
Nil Volentibus Arduum

(nothing is impossible to the valiant)